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Abstract

This paper addresses -t-,e nonlinear least-squares problem minER. Ijf(x)J2 ,, where f(z) is

a vector in R"' whose components are smooth nonlinear functions. The problem 'arises most

often in data fitting applications. Much research has focused on the development of specialized

algorithms that attempt to exploit the structure of the nonlinear least-squares objective. We

survey methods developed for problems in which sparsity in the derivatives of ,4 is not taken into

account in formulating algorithms. _2 7,, , -A _ .. 2 - I
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1. Introduction

This paper addresses the problem of minimizing the 12 norm of a multivariate function:

1 2ranin lf2.12

where f(Y) is a vector in T" whose components are real-valued nonlinear functions with con-

tinuous second partial derivatives. We shall refer to the function 1 [If (Y)II as the nonlinear

leact-sq uare, objective function. An alternative formulation of the problem is that of minimiz-

ing a sum of squares:
Mrain 7 2

zEl* 2 =

where each 6i is a real-valued function having continuous second partial derivatives.

There is considerable interest in the nonlinear least-squares problem, because it ..rises in

virtually all areas of quantitative research in data-fitting applications. A typical instance is the

choice of parameters # within a nonlinear model V so that the model agrees with measured

quantities di as closely as possible:

2:

where Ti are prescibed values. Much research has focused on the development of specialized

algorithms that attempt to exploit the structure of the nonlinear least-squares objective. Despite

these efforts, methods do not perform equally well on all problems, and it is generally not possible

to characterize those problems on which a particular method will work well.

In this paper, we survey existing numerical methods for dense nonlinear least-squares prob-

lems. For a study of the performance of widely-distributed software for nonlinear least-squares,

see Fraley [1987a, 1988]. We assume a knowledge of numerical methods for linear least-squares

problems (e. g., Lawson and Hanson [1974], and Golub and Van Loan [1983]). We also assume

familiarity with Newton-based linesearch and trust-region methods for unconstrained minimiza-

tion (e. g., Fletcher [1980], Gill, Murray, and Wright [1981], Dennis and Schnabel [1983]. and

Mote and Sorensen [1984]). If Y is the function to be minimized, recall that both finesearch and

trust-region methods involve iterative minimization of a quadratic local model

Q ( ) (2.k)Tp + I T /,
Q~p)=F(7a P T~ Hkp

for T(Yk + p) - Y(Z). the change in .F at the current iterate 2'k. In linesearch methods, the

vector p'5 defined by
p rg mint (
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is used as a ,earrh dirtertion. A positive step is taken from Yk along pl, to the next iterate,

that is,

.'k+l = Yk + nrkPky4

where the steplenIgthl nk > 0 is computed by approximate minimization of the function *&(O)

.:(z, + npA. ). The vector p" must be a descent direction for Y at 7k - in other words,

V.F'(7C)T/P 5 < 0 - so that Y initially decreases along pt5 from T . Normally 1r, is required

to be positive definite, which guarantees that the quadratic model has a unique minimum that

is a descent direction. In trust-region methods,

i7k + P",

where
TR

Pk = arg Mi rEIR" Q(p) subject to ullI _ bk.

The rationale for restricting the size of p in the subproblem is that Q(p) is a good approximation

*to Y only at points close to xk.

1.1 Definitions and Notation

We shall use the following definitions and notational conventions:

0 Generally subscripts on a function mean that the function is evaluated at the corresponding

subscripted variable (for example, fA = f(x')). An exception is made for the residual

functions O&, where the subscript is the component index for the vector I.

f - The vector of nonlinear functions whose 12 norm is to be minimized.

IrI
eThe nonlinear least-squares problem is

Mijn I f(2)Tf( 7 )'
rEW" 2

where the factor 11 is introduced in order to avoid a factor of two in the derivatives.

SOi - The ith residual function, also the ith component of the vector f.

An alternative formulation of the nonlinear least-squares problem is

I|
rE'R, 2

2
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where each ,,(z) is a smooth function mapping T" to .

" J - The ?n x n Jacobian matrix of f.

l(X) f-- (z)= . ". -

* g - The gradient of the nonlinear least-squares objective. %

g()11V f(a.)Tf(Z) J(X) T f(Z)

" B - The part of the Hessian matrix of the nonlinear least-squares objective that involves

second derivatives of the residual functions. We have

V 2 (1 f(z)Tf(Xr)) --J(r)TJ(r) + B(z),

where

* R(A) - The range of A.

If . is an in x n matrix, then R(A) b E R'" I Az= b for some E "} is a subspace

of R. .

S.A'(A) - The null space of A.

If .A is an ?n x n matrix, then A'(A) ={z E T" I Az = 0} is a subspace of R". . '(A) is is

he orthogonal complement of R.(AT) in R".

2. Gauss-Newton Methods

The classical approach to nonlinear least squares, called the Gauss-Newton method, is a

linesearch method in which the search direction at the current iterate minimizes the quadratic

function
T T1 jkP

9k P + -P k (2.1)p

The function (2.1) ;s a local approximation to IIf(z + P)112 Ilf(7k)I2 in which each residual

component of f is approximated by a linear function, using the relationship

f(Tk + p) f(Xk) + J(zk )P + 01IP112).

3
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As a model for the change in the least-squares objective, (2.1) has the advantage that it involves

only first derivatives of the residuals, and that .T.1 is always at least positive semi-definite. If

T TTl .k = arg min VER- 9 k 1) + P "k JklP

then p"N satisfies the equations

3 kTjkp = _k, (2.2)

and is therefore a direction of descent for fTjf whenever g : 0 - as required in a linesearch

method. To guarantee convergence to a local minimum, the sequence of search directions must

also be bounded away from orthogonality to the gradient, a condition that may not be met by

successive Gauss-Newton directions unless the eigenvalues of jTj are bounded away from zero.

Powell [1970] gives an example of convergence of a Gauss-Newton method with exact linesearch

to a non-stationary point.

The Gauss-Newton method can be viewed as a modification of Newton's method in which
jTj is used to approximate the Hessian matrix

jTj + 0,V 20, = jTj + B

of the norlinear least-squares objective function. The assumption is that the matrix jTj should

be a good approximation to the full Hessian when the residuals are small. In fact, if f (z) = 0

and j(y. )Tj(,r) is positive definite, then the sequence {r& + pVN} is locally quadratically

convergent to T*, because

.1 V211f( )1I1 + 0(117k - X*lL

For more'convergence results and detailed convergence analysis for the Gauss-Newton method,

see, e. g., Chapter 10 of Dennis and Schnabel [1983], Schaback [1985], and Hiussler [1986], as

well as some of the references cited below.

McKeown [1975a, 1975b] studies test problems of the form,
'7 7THIrf),

f(r) =f o + o + ( 1)
chosen so that factors affecting the rate of convergence could be controlled. He uses three

such problems, with seven different values of a parameter that varies an asymptotic linear con-

vergence factor, The algorithms tested include some quasi-Newton methods for unconstrained

optimization, as well as some specialized methods for nonlinear least squares that have since

-I N "k N N. ~' 55 *'S,4
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been superseded. He concludes that, when the asymptotic convergent factor is small, the Gauss-

Newton method is more efficient than the quasi-Newton methods, but that the opposite is true

when the asympotic convergence factor is large. Fraley [1987a, b; 1988] gives numerical re-

sults for some Gauss-Newton methods using these problems, and observes that the Jacobian is

well-conditioned at every iteration.

A difficulty with the Gauss-Newton method arises when jTJ is singular. or. equivalently,

when J has linearly dependent columns, because then (2.1) does not have a unique minimizer.

For this reason the Gauss-Newton method should more accurately be viewed as a class of methods,

each member being distinguished by a different choice of p when jTj is singular. The set of

vectors that minimize (2.1) is the same as the set of solutions to the linear least-squares problem

M IIJkp + fk1 2 . (2.3)
PE!R"

One (theoretically) well-defined alternative that is often approximated computationally is to re-

quire 'the unique solution of minimum 12 norm:

Main I1IP1121 (2.4)

where S is the set of solutions to (2.3). Another alternative is to replace J in (2.3) by a maximal

linearly independent subset of its columns. In finite-precision arithmetic, there is often some

ambiguity about how to formulate and solve an alternative to (2.3) when the columns of J are
"nearly" linearly dependent, so that, from a computational standpoint, any particular Gauss-

Newton method must be still viewed as a class of methods. The references cited above for linear

least squares discuss at length the difficulties inherent in computing solutions to (2.3) when J

is ill-conditioned, and show that the numerical solution of these problems is dependent on the

criteria used to estimate the rank of J. From now on, the term "Gauss-Newton method" will

refer to any linesearch method that has the following two properties. First, the nonlinear least-

squares objective is used as a merit function for the linesearch. Second, the search direction is

the result of some well-defined computational procedure for solving (2.3).

For a survey of some of the early research on numerical Gauss-Newton methods, see Dennis

[1977]. More recently, Deuflhard and Apostolescu (1980] suggest selecting a steplength for the

Gauss-Newton direction based on decreasing the merit function IIJJf(r)lJJ rather than IIf(.7)112,
for a class of nonlinear least-squares problems that includes zero-residual problems. The function

k. is the ps,,do-iniers' of .7 (see, e. g., Chapter 6 of Golub and Van Loan 11983]) J is
another way of representing the minimum 12-norm solution to J.7kp + fkII,. They reason that

2

the Gauss-Newton direction is the steepest-descent direction for the function II.t/tf(X)1, so that

the geometry of the level surfaces defined by JI..'2f(7)JlJ is more favorable to avoiding small steps

,4S



in the linesearch. A shortcoming of this approach (pointed out by the authors) is that there are

no global convergence results. The merit function depends on xri, so that a different function is I,

being reduced at each step, Another difficulty is that. although the authors state that numerical

experience supports selection of a steplength based on for ill-conditioned problems, the

transformation .7t is not numerically well-defined under these circumstances. Therefore neither

the Gauss-Newton search direction, nor the merit function, is numerically well-defined when the

columns of .1 are nearly linearly dependent.

There is another reason why it is difficult to say precisely what is meant by a "Gauss-Newton

method" for a particular nonlinear least-squares problem. To see this, let Q(T) be an I x M

orthogonal matrix function on T", that is, Q(.)TQ(.) = J for all 2. Then l1Q(z)f( )lI =

Il'( )Ill for all z, and consequently the function I QI defines the same nonlinear least-

squares problem as f. The Jacobian matrix of f is J QJ + (VQ)f, so that a minimizer of

Iip f 112 will ordinarily be different from a minimizer of IIVP + fIl1, unless Q(X) happens to

be a constant transformation. However, if both Q and f have k continuous derivatives, then

II(?( )f(')l 2 = 2llf(i)ll2 for i = 1,2. k. Letting 11' =_ (VQ)f, so that J QJ + I',

we have
jTj = ji j + (jTQT11- + 11 TQJ) + [ Tjj,

showing that the Gauss-Newton approximation jTj to the full Hessian matrix is changed when

f is transformed by an orthogonal function that varies with r. Thus, with exact arithmetic, there

are many Gauss-Newton methods corresponding to a given vector function, although Newton's

method remains invariant (see also Nocedal and Overton (1985], p. 826). In fact, each step

of a Gauss-Newton method could be defined by a different transformation of f. Moreover, the

conditioning of .1 may be very different from that of J, so that, for example, the columns of

i might be strongly independent, while J is nearly rank deficient. Since the number of rows

in Q may be greater than n, it is possible to imbed the given nonlinear least-squares problem

in a larger one. This suggests the (so far unexplored) idea of preconditioning a Gauss-Newton

method at each step with an orthogonal function.

Although it is known that Gauss-Newton methods do not work well under all circumstances,

it is not possible to say anything more precise about the method when considering large and

varied sets of test problems. Gauss-Newton methods are of practical interest because there are

many instances in which they work very well in comparison to other methods. In fact, most

successful specialized approaches to nonlinear least-squares problems are based to some extent

on Gauss-Newton methods and attempt to exploit this behavior whenever possible. However, it

S 41
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is not hard to find cases where Gauss-Newton methods perform poorly, so that they cannot be

successfully applied to general nonlinear least-squares problems without modification.

Fraley [1987a, 1988) gives numerical results for a large set of test problems using widely-

distributed software for unconstrained optimization and nonlinear least squares. She also includes

some Gauss-Newton methods that use LSSOL [Gill et al. (1986a)] to solve the linear least-squares

subproblem (2.3). Her findings confirm that Gauss-Newton methods are often among the best

available techniques for nonlinear least squares - especially for zero-residual problems - but

that there are many cases in which they fail or are inefficient. Detailed examples are presented

that illustrate some of the difficulties involved in characterizing those problems on which Gauss-

Newton methods will or will not work well (see also Fraley (1987b]).

Many attempts have been made to define algorithms that depart from the Gauss-Newton

strategy only when necessary. Bard (1970] compares some Gauss-Newton-based methods with

a Levenberg-Marquardt method (Section 3) and some quasi-Newton methods for unconstrained

optimization on a set of ten test problems from nonlinear parameter estimation. He uses the

eigenvalue decomposition of jTj to solve the normal equations (2.2). In order to ensure a

positive-definite system. he modifies the eigenvalues if their magnitude fat's below a certain

threshold. In addition, his implementations include bounds on the variables that are enforced by

adding a penalty term to the objective function. He finds that the Gauss-Newton-based methods

are more efficient in terms of function and derivative evaluations than the quasi-Newton methods,

but that there is no significant difference in the relative performance of the Gauss-Newton-based

methods and the Levenberg-Marquardt method.

Betts (1976] proposes an algorithm that combines a Gauss-Newton method with a method

in which the Gauss-Newton app>roximate Hessian JTj s augmented by a quasi-Newton approx-

imation to the second-order term B = 0,= ,V 2
0, in the nonlinear least-squares Hessian (see

Section 5). The algorithm starts with a Gauss-Newton method, and then switches to the aug-

mented Hessian when it is believed that the iterates are near the solution. The criterion for the

switch is

IlPk112 < ( + 117k!12), (2.5)

for some ( < 1. Results are presented for the hybrid methods, as well as for the underlying

Gauss-Newton method and special quasi-Newton method (see Section 5), on a set of eleven

test problems. Betts concludes that the hybrid method is superior, especially on problems with

nonzero residuals, although the results he lists in his tables do not all have the same value of

in (2.5). Another issue that is not clarified is the treatment of near-singularity or indefiniteness

in the quadratic model in any of the methods tested. Also the test (2.5) may not necessarily

N7
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imply that the Gauss-Newton iterates are in the vicinity of a solution, and could instead indicate

ineffic;ency in the Gauss-Newton method at some arbitrary point. 0

Ramsin and Wedin [1977] compare the performance of a Gauss-Newton-based method with

that of a Levenberg-Marquardt method for nonlinear least squares and a quasi-Newton method for

unconstrained optimization, both from the Harwell Library. The quasi-Newton routine required

an initial estimate 11o of the Hessian matrix, and the choice 11o = J(7 )T.I(X.0 ) was made on

the basis of preliminary tests that showed equal or better performance compared to H0 
= I.

The test problems were constructed so that asymptotic properties could be monitored and are

similar to those of McKeown [1975a, 1975b] mentioned above. In all cases considered, the

Jacobian matrix had full column rank at the solution. The algorithm of Ramsin and Wedin uses

the steepest-descent direction, rather than the Gauss-r!ewton direction, whenever the decrease

in the objective is considered unacceptably small. The experiments involved variation of a large

number of parameters. Ramsin and Wedin conclude that their Gauss-Newton-based method and

the Levenberg-Marquardt method are identical when the asymptotic convergence factor is small,

but that neither method is consistently better for large asymptotic convergence factors. Also,

they find that in instances when the asymptotic convergence factor is large, the quasi-Newton

method may be more efficient, although superlinear convergence of the quasi-Newton method

was never observed. Ramsin and Wedin maintain that Gauss-Newton should not be used when

(i) the current iteiate 7
k is close to the solution z, and the relative decrease in the size of

the gradient is small, (ii) xk. is not near T*, and the decrease in the sum of squares relative to

the size of the gradient is small, or (iii) J is nearly rank-deficient. Conditions (i) and (ii) are

indicators of inefficiency for any minimization algorithm; in general the problem of ascertaining

the closeness of an iterate to a minimum is as difficult as solving the original problern. As for

condition (iii), rapidly convergent Gauss-Newton methods may exist even if nearly rank-deficient

Jacobians are encountered, but that it appears difficult to formulate a single rule for estimating

the rank of the Jacobian that is satisfactory for all such problems (see Fraley (1987a, b]).

Wedin and Lindstrsm [19871 have developed a hybrid algorithm for nonlinear least-squares

that combines a Gauss-Newton method with a finite-difference Newton method. A Gauss-Newton

search direction is computed at every iteration using a QR factorization. The rank estimation

criteria are complicated, and search directions for several different estimates of the rank of J

may be tried before a step is actually taken. A finite difference Newton step may be used when

the steps along Gauss-Newton directions become small, and the iterates are judged to be close

to a solution In the algorithm, the decision about whether the iterates are close to the solution

is based on the relation fif.' 112 > - ,31 for some "1 > 1, where ik is the norm of the projection

of f onto the range of .7k The ratio 3k, ;?k_ is used as an estimate of an asymptotic linear

, 1
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convergence factor. They give numerical results for a set of thirty large-residual test problems

constructed by AI-Baali and Fletcher [1985]. and compare their results with those given by Al-

Baali and Fletcher for two hybrid Gauss-Newton/BFGS methods (Section 9) and a version of

NL2SOL (Section 5). Wedin and Lindstr6m find that their method gives better overall results

than the other methods, although their method does fail in three cases due to a finite-difference

Hessian that is not positive definite.

3. Levienberg-Marquardt Methods

In Levenberg-Marquardt methods, the Gauss-Newton quadratic model (2.1) is minimized

subject to a trust-region constraint. The step p between successive iterates solves

rinT 2 (3.1)

subject to lIDpI <_ A.

for some 6 > 0 and some diagonal scaling matrix D with positive diagonal entries. Equivalently,

p minimizes the quadratic model

gTr .+ pT(jT J Dr D)p, (3.2)

for some A > 0. Since the matrix 1 T 1 + ADTD is positive semidefinite, minimizers pA of (3.2) ,!

satisfy the equations

(jTj + ADr D)p = -g = _jTf, (3.3)

which are the normal equations for the linear least-squares problem

min /- p-' (3.4)
pEin VD ) p- 0

Hence a regularization method (e. g., Chapter 25 of Lawson and Hanson [1974], Eldin [1977,

1984], Varah [1979]. and Gander [1981]) is being used to solve the linear least-squares problem

(2.3) for the step to the next iterate.

The paper by Levenberg [1944] is the earliest known reference to methods of this type.

Based on the observation that the unit Gauss-Newton step p,, often fails to reduce the sum of 4

squares when 1ip,11 is not especially small, he suggests limiting the size of the search direction '.

by solvirg a "damped" least-squares subproblem,

min c,'(g - pTjp) + I I l1 (3.5)
2

9
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in which a weighted sum of squares of linearized residuals and components of the search direction

is minimized. He proves the existence of a value of u for which

fIf(z + r 112 < IfH( ) 12 '

where p. solves (3.5), thus ensuring a reduction in the sum of squares for a suitable value of '.

A major drawback is that no automatic procedure is given for obtaining W. Levenberg suggests

computing the value of fJ)(y - p, )11, for several trial values of W, locating an approximate

minimum graphically, and then repeating this procedure with the improved estimates until a

satisfactory value of Le is obtained, but precise criteria for accepting a trial value are not given.

Two alternatives are proposed for the diagonal scaling matrix D in (3.5) :D = I, because it

minimizes the directional derivative g.Tp, for w = 0, and the square root of the diagonal of
jTj, based on empirical observations. The claim is that the new method solves a wider class of '

problems than methods that existed at that time, and that it does so with relative efficiency. a'a

Somewhat later, a similar method was (apparently independently) proposed. Morrison [1960]

considers a quadratic model
T + p (3.6)

in which either H =JT. or H = 72 (fTf) (in the latter case, it is implicitly assumed

that -? (fTf) is positive semidefinite). He advocates minimizing (3.6) over a neighborhood

of the current point as does Levenberg, because (3.6) may not be a good approximation to
(fr + 1')112 - if the minimizer p" is large in magnitude, and consequently the sum

of squares may not be reduced at x + p'. (In Hartley (1961, a linesearch is used with the

Gauss-Newton direction for the same reason.) Morrison proves that the solution pA to

min Tp + I pT( 1 + AD)p

for A > 0 is the constrained minimum of (3.6) on the sphere of radius IIDpxll , and that

1111 - 0 as A- ., In Morrison's method, the step bound 6 is the independent parameter,

rather than A. No specifications are given for either 6 or DA although it is implied that they can

be chosen heuristically for a given problem. Instead of minimizing (3.6) subject to IIDpII2 < 6,

constraints of the form Idix, < A are imposed, and the resulting subproblem is then solved using

the eigenvalue decomposition of I. Although the theory and methods apply for any positive

semi-definite I in (3.6), no generalization to unconstrained minimization is mentioned.

Marquardt [1963) extended Morrison's work, showing that the vector p, that solves (3.3)

becomes parallel to the steepest-descent direction as - . so that px interpolates between

the Gauss-Newton search direct;on. Po. and the steepest-descent direction, p, . He points out

10
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that the method determines both the direction from the current iterate to the next one, and

the distance between the iterates along that direction, and that increasing A decreases the step

length, while shifting the direction away from orthogonality to the gradient of the sum of squares.

Marquardt's strategy controls A automatically by multiplying or dividing the current value by a

constant factor v' greater than 1. He maintains that the minimum of the Gauss-Newton model

should be taken over the largest possible neighborhood, that is, that A should be chosen as small

as possible, so as to achieve faster convergence by biasing the search direction toward the Gauss-

Newton direction when Gauss-Newton methods would work well. Thus, at the 1'th iteration.

Ak = Ak-i/i is tried first, and then increased if necessary by multiples of 1, until a reduction

in the sum of squares is obtained. A shortcoming of this scheme is that A is always positive, so

that the constraint in (3.1) is active in every subproblem, and consequently a full Gauss-Newton

step can never be taken. Also, no efficient method is given for solving (3.3) for different values

of A. Motivated by statistical considerations, Marquardt uses the diagonal of jTj for the scaling

matrix D (one of the alternatives proposed by Levenberg), and mentions that this scaling has

been widely used as a technique for computing solutions to ill-conditioned linear least-squares

problems.

Since the appearance of Marquardt's paper, and also that of Goldfeld, Quandt, and Trotter

[1966], which independently proposed trust-region methods for general unconstrained optimiza-

tion, much research has been directed toward improvements within the framework presented

there. Bard [1970] takes the eigenvalue decompostion of .*T) at each iteration, so that (3.3)

can be easily solved for several values of A, and so that it will be known whether or not jTj

is singular. Bartels, Golub, and Saunders [1970] show how to use the S\'D of J instead of

the eigenvalue decomposition for the same purpose. They also give an algorithm for computing

A given 6 that involves determining some eigenvalues of a diagonal matrix after a symmetric

rank-one update. Meyer [1970] discusses the use of a linesearch with Marquardt's method (see

also Osborne (1972]). Shanno [1970] selects A so that PA is a descent step for II ..( )i) The

value A = 0 is tried first, and then increases are made by multiplying a threshold value by a

factor greater ihan one until <() < 0, where g (A) = Iif(Y + PA)112. In addition, a linesearch is '

also used when cos(p,g) is above a threshold value, that is, when PA is judged to be nearly in

the direction of -g. Shanno's method is meant for general unconstrained or linearly-constrained

minimization, as well as for nonlinear least squares.

Several methods have attempted to approximate Levenberg-Marquardt directions by a vector

that is the sum of a component in the steepest descent direction, and a component in the Gauss-

Newton direction p,. Jones [1970] combines searches along a spiral arc connecting pc and

,S
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the origin , ith parabolic interpolation in order to obtain a decrease in the sum of squares. If a

reduction is not achieved after trying several arcs, then the steepest descent direction is searched.

The method of Powell (1970a] for nonlinear equations and (1970b] for unconstrained optimization

searches along a piecewise linear curve. The algorithm for unconstrained optimization requires

some agreement between the reduction predicted by the quadratic model and the actual reduction

in the sum of squares before the step is accepted. Global convergence results that include use of

the quadratic model (2.1) for nonlinear least squares are given in Powell [1975] (see also Mori

(1983]). Steen and Byrne [1973] approximate a search along an arc that intersects g at a nonzero

point. Their algorithm requires that .1Tj be scaled so that its smallest eigenvalue is 2, which they

accomplish by computing ( T J)- and finding either ,j(J'J)-'J, or f(JTJ)-1 fl. A diagonal

of unspecified small magnitude is added to JTJ in the event of singularity. A difficulty with any

algorithm based on this type of approach is that it is not clear how to define the approximation

when the Gauss-Newton direction is not numerically well defined.

Fletcher [1971] implements a modified version of Marquardt's algorithm, in which adjust-

ments in the parameter A are made on the basis of a comparison of the actual reduction in the

sum of squares

1 (iffy + PJ)I1- If(z)II2 , (3.7)

with the reduction

PA + 2 , , (3.8)

predicted by the model (3.2), which is the optimum value of the objective in (3.1) (see also

Powell [1970b]). The step px is taken only when there is sufficient agreement between (3.7) and

(3.8), instead of accepting px whenever the trial step results in a reduction in the sum of squares.

Fletcher also introduces more complicated techniques for updating A. The scheme for decreasing

A differs from that given by Marquardt in that division by a constant factor is used only until A

reaches a threshold value, A, below which it is replaced by zero. This modification is motivated

by a desire to allow the Gauss-Newton step (A = 0) when Gauss-Newton methods would work

well, since A is always positive in Marquardt's method, and to allow the initial choice of A = 0

rather than some arbitrary positive value. Because numerical experiments show that multiplying

by a fixed constant factor may be inefficient. Fletcher uses safeguarded quadratic interpolation

to increase A when (3.7) and (3.R) differ substantially. If the current value of A is nonzero, then

it is divided by a factor
0.1 , ifn,,, <0.1;{, if 1 E [E0.1,0. 5]; (3.9)

0.5. if > 0..
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where Oi, is the minimum of the quadratic interpolant to the function 6(n) = II+( + np)1,

at e(0), 0'(0), and 0(i ). There is also a provision to increase A = 0 to the threshold value A,

under certain circumstances. The choice of A, appears to be a major difficulty.

Fletcher gives some theoretical justification for choosing A, to be the reciprocal of the

smallest eigenvalue of (JTJ)-. Since he chooses to solve (3.3) directly for each value of

A via the Cholesky factorization, rather than compute the eigenvalue decomposition of jT.I

or the singular values of J, the minimum eigenvalue of jTj is not available without further

computation. He therefore updates the estimate of Ac only when A is increased from 0, calculating

(.JTJ)-l from the Cholesky factorization of JTj, and then takes either A = 1/ II(JTJ)- III.1

or A, = 1/trocc ((jTj)-). A drawback is that A, is not defined when jTj is singular, and it

is not well defined when JTJ is ill-conditioned. Harwell subroutine VA07A is an implementation

of Fletcher's method. It allows the user to select the scaling matrix D, which then remains fixed

throughout the computation. The default for the scaling matrix is the square root of the diagonal

of jTj at the starting value.

An efficient and stable method for solving (3.3) for several values of A based on the linear

least-squares formulation (3.4) is given by Osborne [1972]. The method is accomplished in two

stages. First, the QR factorization of J is computed, to obtain

afterQ whc a seisR~(A )~~) (3.10)

after which a series of elementary orthogonal transformations are applied to reduce the right-hand

side of (3.10) to triangular form. Thus it is only necessary to repeat the second stage of this

procedure when the value of A is changed, provided the QR factorization of J is saved. In a later

paper, Osborne [1976] discusses a variant of Marquardt's algorithm for which he proves global

convergence to a stationary point of ,T 1 under the assumption that the sequence {Ak} remains

bounded. In this method, he uses a simple scheme similar to the one proposed by Marquardt

to update A, but controls adjustments in A by comparing (3.7) and (3.8). His implementation

takes D to be the square root of the diagonal of jTj, as in Marquardt's method.

The algorithm of Mori [1978) adjusts the step bound A in (3.1) rather than A, a strategy

used in trust-region methods for unconstrained optimization (see Mori [1983] for a survey).

Changes in b depend on agreement between (3.7) and (3.8); increases are accomplished by

taking 4t41 = 2i1DkpkII2, while b is decreased by multiplying by the factor 7Y defined by (3.9).

In order to obtain A when the bound in (3.1) is active, the nonlinear equation

= IIDr IJ2 -6 = J(.
I T J + ADT D) - 9j 2 6 0 (3.11)
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is approximately solved by truncating a safeguarded Newton method based on the work of Hebden

[1973] (see also Reinsch [1971]). Mori reports that, on the average, (3.11) is solved fewer than

two times per iteration. Also, he proves global convergence to a stationary point of -Tf, without

assuming boundedness for {A, }. Many computational details are given, including an efficient

method for calculating the derivative of %If(A) in (3.11) that uses the QR factorization of J.

A modification of the two-stage factorization described in Osborne (19721 that allows column

pivoting is used to solve (3.3). Subroutine LMDER in MINPACK [Mori, Garbow, and Hillstrom

(1980)] is an implementation of the method. Variables are scaled internally in LMDER according

to the following scheme: the initial scaling matrix Do is the square root of the diagonal of J T j

evaluated at ro, and the ith diagonal element of Dk is taken to be the maximum of the ith

diagonal element of Dk,_ 1 and the square root of the ith diagonal element of jTJ. Numerical

results are presented indicating that this scaling compares favorably with those used by Fletcher.

and by Marquardt and Osborne. The user also has the option of providing an initial diagonal

scaling matrix that is retained throughout the computation.

Nazareth (1980, 1983] describes a hybrid m-thod that combines a Levenberg-Marquardt

method with a quasi-Newton approximation .T'k to the full Hessian. The search directions solve

a system of the form

(kJTJk +- (1 - Ok) Hk + A'\k D D) p =-k

with Ok E [0. 1) and Ak > 0. He compares the reduction in the sum of squares predicted by both

the Levenberg-Marquardt and quasi-Newton models with the actual reduction, and then chooses

o k on the basis of this comparison. In Nazareth [1983], a simple version of the hybrid strategy is

implemented that uses Davidon's optimally conditioned update, with Dk = I, and a variation of

Fletcher's [1971] method for updating A. Results are reported for a set of eleven test problems -N

including five problems with nonzero residuals - and compared to the use of the algorithm as a

quasi-Newton method (Ok = 0) or a Levenberg-Marquardt method (Ok = 1). He concludes that

the hybrid method is somewhat better for the problems with nonzero residuals, and recommends

development of a mote sophisticated implementation.

4. Corrected Gauss-Newton Methods

Gill and Murray [1976] propose a linesearch algorithm that divides 9" into complementary

subspaces R and .', where 'R C R(.T), and ..'V is nearly orthogonal to R(JT). The search

direction is the sum of a Gauss-Newton direction in A, and a projected Newton direction in

IiK. This strategy avoids a shortcoming of Gauss-Newton methods - that components of the
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search direction that are nearly orthogonal to r(JT) may not be well determined when J is

ill-conditioned - because each component is computed from a reasonably well-conditioned sub-
problem. The vector x - x" may become almost entirely in R(jT) in a Gauss-Newton method.

yet the algorithm computes a search direction that is virtually orthogonal to IZ(.JT) due to ill

conditioning in the Jacobian (see Fraley [1987b]). Gill and Murray show that both Gauss-Newton

algorithms defined by (2.4) and Levenberg-Marquardt algorithms generate search directions that

lie in 7.(jT), while the Newton search direction generally will have a component in A,(J), the

orthogonal complement of R(JT), whenever J has linearly dependent columns. For problems

with small residuals, they point out that JTj is a reasonable approximation to the full Hessian

in .(J T ), but not in A(J). Thus, in situations where ., - x" is orthogonal to 7.(JT), and J

is well-conditioned but has linearly dependent columns (for example, when m < n). the Gauss-

Newton and Levenberg-Marquardt directions have no component in the direction of X - ,*, while

Newton's method and also the method of Gill and Murray would have components in both R(JT)

and A'(J).

The basic idea of the method is as follows. Suppose that

J = QTVT  (4.1)

is an orthogonal factorization of J, in which T is triangular with diagonal elements in decreas-

ing order of magnitude (either a QR factorization with column pivoting or the singular-value

decomposition). Let

1= Z (4.2)

be a partition of V into the first gradc(,J) columns and the remaining v - grade(J) columns.

The columns of Y form an orthonormal basis for J%, and those of Z form an orthonormal basis

for .'. The Newton search direction for the nonlinear least-squares problem is given by

(jTJ + B)p = _;Tf,

with

or, equivalently,

VT(JTj + B)p = -VTjTf, (4.3)

since V is nonsingular. Using (4.2). equation (4.3) can be split into two equations:

y.r(jTj + B)p = _yTJTf, (4.4)

is



and

ZT(jTj + B)p = zTjTf. (4.5)

Substituting p = +p1  - Zp, into (4.4) yields

yT.jTJ)j')) + 1'TjTjZpz + Y,TBP = _yTjTf.

Since .qrodr(J) is chosen to approximate rank(,1), IIJZII is presumed to be zero, so that
).TjT.jZ7  vanishes. Also, for zero residual problems, the term YTBp would be small near

a minimum relative to yTjTjY,) , since IIBII approaches zero. Defining ( to be I1T - z'11,
where x° is a minimum at which the residuals are zero, and assuming Ifli = C(o) we have

1 .TjTj 1 p. = 0(f); TBp = C(( 2 ); 1TjTf = C(().

The range-space component of the search direction is therefore chosen to satisfy

).T jT jyp. = _yTjTf. (4.6)

With gradr(.1) = rnipk(J), the vector Yp,. is the minimal 12-norm least-squares solution to

Jp : -jf, and is therefore a Gauss-Newton direction. For the null-space portion, since JZ = 0 .

is assumed, (4.6) reduces to

ZTBp = 0,-

which may be solved for Zpz given Yp, from (4.5) using

ZT BZpZ = ZTBIP,.. (4.7) %

When exact second derivatives are not available, the use of finite difference approximations along

the columns of Z is suggested.

A version of this algorithm called the corr'ced Gnuss-Newiton method [Gill and Murray ,.

(1978)] forms the basis for the nonlinear least-squares software currently in the NAG Library
(1984]. It uses the singular-value decomposition of J, rather than a QR factorization. Rules

based on the re!ative size of the singular values are given for choosing an integer gradc(J) to

approximate ran k(J). and an attempt is made to group together singular values that are similar

in magnitude. The method is not as sensitive to gradr(J) as Gauss-Newton is to rank estimation,

both because of the division of the computation of the search direction into separate components

in *? and .', and because gradc(.1) is varied adaptively based on a measure of the progress of

the minimization. Moreover, the rate of convergence is potentially faster than Gauss-Newton

or Levenberg-Marquardt methods on problems with nonzero residuals. The quantity gradr(J)

is reduced when the sum of squares is not adequately decreasing, so that there is the potential
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of having .V R =s" (with exact second derivatives, this implies taking full Newton steps) in the

vicinity of a solution. The derivation below shows how the corrected Gauss-Newton method

differs from the earlier version based on the QR factorization.

Because of (4.1), J1 can be written as VTTTV'T, so that (4.3) is equivalent to

TT7'vTp + v1TBp = -TTQTf. (48)

Using p = Yp, + Zp2, along with

( 0=o'°ddJ) and ,Tz - ( ade(J))

(4.8) becomes

, () + TT ( t1 + Bp = -TTQTf. (4.9)

If we let

T =(T12 T12

be a partition of T, where T11 is the submatrix consisting of the first k rows and columns of T,

then

(T=(TT1  + TT'T 2 I) (TT 1 2 + TT 2 2 )

and (4.9) can be split into two equations :

(TIT 11 + T 2T 1 )P. + (TITIT 1 2 + T2T 2 2 )p, + YTBp = -( TI T, )QTf, (4.10)

and

(TITT + T2T)p, +(TTT, 2 + T2T 2 2 )p +ZTBp= -(T, T2 2)QTf. (4.11)

As in the earlier version, the term yTBp is ignored in (4.10). Moreover, in the case that (4.1) is

the singular-value decomposition, both T,2 and T2 , vanish and the two equations can be further

simplified to

SP. =-(S 0 )QTf (4.12)

and
sp + ZTBp -(0 S2 ) QTf, (4.13)

where

S, and S2 =T 2 2.

Note that S, and 52 are diagonal matrices, and that the p,. term in the second equation could

not be ignored if (4.1) were a triangular factorization of J, because then (Tj2 T1 + TTT 2I)

17
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could not be assumed negligible relative to (T7"T 1 2 + T 2T2T). The equations that are ultimately

solved are

SiP = -( gad,(J) O)QTJ. (4.14)

and

(S2 + Z'rBZ)p, = -(0 S2 ) QTJ _ ZTBp,.. (4.15)

The matrix S + ZTBZ is replaced by a modified Cholesky factorization if it is computationally

singular or indefinite. The range-space component is a Gauss-Newton search direction, wh:'!, in

the positive-definite case, the null-space component is a projected Newton direction.

When no modification is necessary, the subproblem being solved is

min gTp + pT(JTj + B)p (4.16)

subject to Jp " -I,

where '=' is taken in a least-squares sense if the rows of J are linearly dependent, as in the case

when rn > 7r, and otherwise as equality. Subproblem (4.16) is an equality constrained quadratic

program. When raiik(J) = gradr(J) = r, its solution is a full-rank Gauss-Newton direction

that is completely determined by the constraints in (4.16). When rank(J) = grade(J) < V,

the search direction is computed as the sum of two mutually orthogonal components, defined by

equations (5.3.14) and (5.3.15). In this case S2 = 0, so that the projected Hessian in (5.3.15)

is ZTBZ and therefore involves only the second derivatives of the residuals. We shall return to

this point in Section 7, when we discuss SQP methods for nonlinear least squares.

Although the range-space component solving (4.14) can never be a direction of increase

for fTf (see Fraley [1987a]), the search direction computed by (4.14) and (4.15) may not be a IL

descent direction for fT./ regardless of whether or not S2+ ZTBZ is modifed, on account of the .-

p. term in (4.15). Thus, if Ico.;(g,p)j is smaller than some prescribed value, or if gTp is positive,

then a modified Newton search direction (corresponding to the case grnde(J) = 0) is used

instead. A finite-difference approximation to the projected matrix ZTBZ along the columns

of Z, and a quasi-Newton approximation to B (see the discussion in Section 5) are given as

alternatives to handle cases in which second derivatives of the residual functions are not available

or are difficult to compute. Gill and Murray test their method on a set of twenty-three problems,

and find that when quasi-Newton approximations to B are used, the algorithm does not perform

as well as it does with exact second derivatives or finite-difference approximations to a projection

of B. They observe only linear convergence for the quasi-Newton version on problems with large

residuals. The algorithms are implemented in the NAG Library [1984] in the NAG Library (1984]

subroutine E04HEF uses exact second derivatives, while subroutine EO4GBF is the quasi-Newton

version.
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5. Special Quasi-Newton Methods

Another approach to the nonlinear least-squares problem is a based on a quadratic model

9Tp + I p Tj + B)P,
2

where B involves quasi-Newton approximations to the term
m

B() = "O,(X)V2(,(7T)

in the Hessian of the nonlinear least-squares objective. Brown and Dennis [1971] first proposed

a method in which the Hessian matrix of each of the residuals was updated separately. This

technique is impractical because it entails the storage of in symmetric matrices of order 17, and

more recent research has aimed to approximate B as a sum.

Dennis [1973] suggests choosing the updates to satisfy a quasi-Newton condition

,k+,Sk = Yk - JT4.Jk+l$k, (5.)

where

k = k+1 - Yk and Yk --- gk+1 -gk.

It is implied that the update can then be chosen as in the unconstrained case, although there

is some ambiguity as to how this should be done. One possibility is to update B k directly to

obtain Bk+1, subject to a quasi-Newton condition such as (5.1) on Bk+lR1&. Another approach

consistent with Dennis' description is to modify Hk = j4r4.4 .1 + Bj, requiring the updated

matrix ]1k+ 1 to satisfy a quasi-Newton condition

H+k = Yk. (5.2)

Then k+i = ]j,+l -7T+lJ,+l is the new approximation to B at Xk+l. Depending on

the update and quasi-Newton conditions, the two alternatives may not yield the same result.

Moreover, updates defined by minimizing the change in the inverse of L/k, such as the BFGS

update to bk, make no sense in this context, since the matrix B would not, by itself, be expected

to be invertible.

Betts [1976] implements a linesearch method in which the symmetric rank-one update (see

Dennis and Mori (1977]) is applied to h, with the quasi-Newton condition

Bk+lsk = Yk J~k Jksk. (5.3)
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This scheme is equivalent to applying the symmetric rank-one formula to the matrix Ilk =

.ITJk+R& with the updated matrix f11/ +. satisfying (5.2), and then taking B&+ = fII -1 k .1k

He compares this algorithm with a Gauss-Newton method, and also with a hybrid algorithm I

that starts with Gauss-Newton, switching to the augmented Hessian Ilk when the iterates are

judged to be sufficiently close together to be near a solution. It is not clear whether the update

is performed when B is not used in the hybrid method. Betts reports observing quadratic

convergence for the special quasi-Newton methods. For further discussion of these results, see

Section 2.

Bartholomew-Biggs [1977] compares the PSB update (see Dennis and Mori [1977]) and the

symmetric rank-one update applied directly to h in a linesearch method. These updates are

tested with the quasi-Newton condition (5.1), as well as with the condition

= Jfkkl -j~fk+i1,(54

which is derived from the relation

~I (z V~t(7 ~ =Z (.k~- ['zOi(zki) - 'O(;rk) + 001"01kf2)]

1T IT
Jk+ltk+l k 'k+41

(see also Dennis [1976]). Bartholomew-Biggs points out that, in general, quasi-Newton ap-

proximations to B may not adequately reflect changes that are due to the contribution of the

residuals. For example, when each residual function 6i is quadratic, and consequently each Vd,

is constant, BI-+, may differ from Bk by a matrix of rank n. For this reason, he does some

experiments with updating TBk for 7 = fk f/fTf, which is the appropriate scaling for the

special case in which fI+ = rfk and the dii are quadratic. In his implementation, a Levenberg- *

Marquardt step is used whenever the linesearch fails to produce an acceptable reduction in the

sum of squares and cos(g.p) > -10- . The scaled symmetric rank-one update with (5.4) is

selected to compare with other methods after preliminary tests, because it exhibited the best

overall performance, and required fewer Levenberg-Marquardt steps. The other methods tested

include a Gauss-Newton method, a method that combines Gauss-Newton with a Levenberg-

Marquardt method, an implementation of Fletcher's [1971] Levenberg-Marquardt method, and

a quasi-Newton method for unconstrained optimization. All of the fourteen test problems have p

nonzero residuals. Bartholomew-Biggs finds that the special quasi-Newton method is more robust

than the other specialized methods for nonlinear least-squares, and that it is particularly suitable

for problems with large residuals. He also observes that on problems on which the Gauss-Newton

and Levenberg-Marquardt-based methods perform poorly, the special quasi-Newton method is

more efrective than the quasi-Newton method for general unconstrained optimization. Nothing
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is said about the observed rate of convergence for any of the methods. He concludes that further

research is needed to determine the best updating strategy, some desirable features being hered-

itary positive definiteness, and the ability to update a factorization of fB. Finally, he indicates

that it would be worthwhile to develop a hybrid method combining Gauss-Newton with a special

quasi-Newton method, in order to avoid the cost of the updates on problems that are easily

solved by Gauss-Newton methods.

Gill and Murray [1978] discuss a linesearch method in which they use the augmented Gauss-

Newton quadratic model only to compute a component of the search direction in a subspace

that approximates the null space of the Jacobian (see the preceding section). They apply the

BEFGS formula for unconstrained optimization (see Dennis and Mori [1977]) to the matrix --,,

Jk+I .lk. +Bk with the quasi-Newton condition (5.2), and then form Bk+ 1 = ]lk+l - .7l+1

The choice of the BFGS update is based on performance comparisons to a number of other

updates, including the symmetric rank-one update and Davidon's optimally-conditioned update

[Dav;don (1975)], as well as the symmetric rank-one update applied to 1 k = JTJk + B, used

in Betts [1976]. They point out that, if JT1 .,+ , spstv eiie n ,te

k 4 lJk+l + Bk+1 is also positive definite with this scheme. In order to safeguard the method,

the projected approximate Hessian is replaced by a modified Cholesky factorization when it is

singular or indefinite. In addition, if co.;(p,g) exceeds a fixed threshold value, a modified Newton

step with the full augmented approximate Hessian is taken. See Section 4 for a summary of their

observations on the performance of the methods.

Dennis, Gay, and Welsch [1981a] apply a scaled DFP update (see Dennis and Mori 11977])

to B, at each step. The new approximation Bk+1 solves

rain IjH-112 (r7&k 1 - B)11-' 2 1 F (0-5)B,71

subject to

I[,k yk If positive definite (5.6)

B.-' = f - .J fk4 B symmetric. (5.7)

where

rk M min{fly /./k k.,'l, 1}. (5.8)

The scale factor rT is based on the observation that the quasi-Newton approximation to B is

often too large with the unscaled update, on account of the contribution of the residuals. The

term k i k- in rk is derived from the self-scaling principles for quasi-Newton methods

of Oren (19731, and attempts to shift the eigenvalues of the approximation B, to overlap with

those of R. using new curvature information at -k. This method forms the basis for the .CM
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computer program NL2SOL [Dennis, Gay, and Welsch (1981b)], which is distributed by the PORT

Library [1984] as subroutines N2G and DN2G. It is implemented as an adaptive method, in that

Gauss-Newton steps are taken if the Gauss-Newton quadratic model predicts the reduction in

the function better than the quadratic model that includes the term involving b. A trust-region

strategy is used to enforce global convergence. Numerical results are given in Dennis, Gay, and

Welsch [1981a] for a set of twenty-four test problems, many with two or three different starting

values. medskip

AI-Baali and Fletcher [1985] describe some linesearch methods that are similar to the method

of Dennis, Gay, and Welsch [1981a] discussed above. They observe that the DFP update defined

by (5.5) - (5.8) is equivalent to finding flk+1 to solve

ti I~'(~'1~+ 4 --- *, H 2 IF (5.9)
/H.H

subject to

11-9k = Yk 1 positive definite (5.10)

= J+fk+l _ jT fk+l + jT+1.7k+lr+ ;, I symmetric.

where
flIJ{Y~'k /.4kT i,}

and then forming

k+1 f~Ik+1 - k+lkI

Moreover, they use the condition

H sk = 9k H positive definite, (5.11)

with
S-. rT.71sk + J[r+fk. , - JTfk+l = 1 2 + C(IkijI) (5.12)

as an alternative to (5.10), and mention that (5.10) has been replaced by (5.11) in newer versions

* of UL2SOL. The claim is that the updated matrix is almost always positive definite. However, if

the matrix k+
T . 4.1 + rk} k is not positive semi-definite, r, is replaced by a quantity hk that

is calculated by a method similar to a Rayleigh quotient iteration, so that JT +Jk+ + -4 ,Bk is

positive semi-definite and singular. A corresponding BFGS method is also given in which the

update is defined by
a%

* ruin 11i-''tW.T .I+ + Tkt~k )- 11 -1/211l.

instead of (5.1)). They conclude from computational tests (described in AI-Baali [19841) that their

method is somewhat more efficient in terms of the number of Jacobian evaluations than NL2SOL,
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but requires more function evaluations, and that there is no significant difference between the

DFP and RFGS updates. AI-Baali and Fletcher also introduce scaling factors based on finding

a measure of the error in the inverse Hessian. They observe that, for the BFGS update for

unconstrained optimization.

1111 I12(Ji-I _ JH-1 )H11I22~ (il:

where

Ak (Hk: lk ) E - 2 YIk + .- 5.3
k lzk 91 Hk 5k(.1)'

Hence an "optimal" value of r can be found by minimizing Ak(.1'T+ 1Jk+I + rBk) as a function

of r. Newton's method is used to find r, an iterative process that requires factorization 0:

k 
+ rB,, for each intermediate value of r. They were apparently unable to draw any

broad conclusions from numerical experiments with this scaling, and refer to AI-Baali [1984] for

details.

A convergence analysis for minimization algorithms based on a quadratic model in which part

of the Hessian is computed by a quasi-Newton method is given by Dennis and Wa!ker 11981) (see

also Chapter 11 of Dennis and Schnabel [1983]). These results are restricted to methods that

satisfy a least-change condition on the matrix Bk (analogous to the PSB and DFP updates).

Only a fairly mild assumption is needed to prove superlinear convergence to an isolated local

minimum x' that the vector /k in the quasi-Newton condition

B k k f

be chosen so that the norm of the update is

(max{ill7k - '11 k+ - X"1r}),

for some p > 0. This assumption is satisfied for y/B in each quasi-Newton Lndate to bk described

above. Their treatment of inverse updates is for the case in which part of the inverse Hessian is

computed, and hence does not apply here. To the best of our knowledge, no convergence results

have yet been proven for scaled versions of the updates, or for updates to T + k that

are not equivalent to some direct quasi-Newton update to Bk.

6. Conjugate-Gradient Acceleration of Gauss-Newton Methods

Ruhe [19791 uses preconditioned conjugate gradients to speed up convergence of Gauss-

Newton methods. General references on conjugate gradients include Fletcher [1980]. Chapter 4,

and Gill, Murray, and Wright [1981], Chapter 4. We give a brief explanation below.
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The linear conjugate gradient method minimizes an n-variate quadratic function

Q(z) = qTp+ I pT Hp,

in at most n iterations. The iteration is

Pk = -9k + /k- p&-i: (6.1)

7k+l 7k + (rkPk

where

_ IIg Il . l
k HJpk 11gkj1 2 21

9k = VQ(z )= q + H,-k+.

The method produces a sequence of search directions that are H-conjugate, that is

piHp =O0 if i t-j.

The number of iterations needed to minimize Q by conjugate gradients (with exact arithmetic)

is equal to the number of distinct eigenvalues of IH. The idea of preconditioning is to transform

H into a matrix whose eigenvalues are nearly identical in magnitude. If a positive-definite matrix

I is used as a preconditinner, then convergence occurs in the same number of steps that wo -

be taken for a quadratic function with the Hessian matrix

The ideal preconditioner would be 1" = H, but since conjugate gradients are competitive mainly

when 7 is large, an approximation that is relatively inexpensive to factorize is used. For a

smooth nonlinear function .r(.T), the conjugate gradient method (6.1) can also be applied, with

9k, = 7-7"(2,) and nO determined by a linesearch, with safeguards to ensure descent. There are

several possible choices for fk that are equivalent to the one given above for the quadratic case

(see, for example, Fletcher [1981], Chapter 4). The method is often restarted every n iterations "

on account of the variation in 7 2.T(X) for non-quadratic functions (e. g., Gill, Murray, and Wright

[1981]. Chapter 4). Preconditioners for the non-quadratic case attempt to approximate 2 T( ).

In Ruhe's algorithm, the matrix .*Tj is used as the precondlitioner, and an orthogonal fac-

torizat;on of J is used to compute the necessary quantities. The method is applied to problems

in which the residuals are nonzero and the Jacobian has full rank, and is restarted every n it-

erations. He concludes that the preconditioned conjugate-gradient method never increases the

total number of iterations required to solve a given problem relative to Gauss-Newton, and that
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significant improvements in the speed of linear convergence of Gauss-Newton on large-residual

problems can be achieved with conjugate-gradient acceleration.

Al-Baali and Fletcher [1985] point out that conjugate-gradient acceleration of the type de-

scribed by Ruhe is equivalent to applying a BFGS update to the Gauss Newton approximate

Hessian JT.7 at each step. They implement and test both this method (without restarts) and a

scaled version, where the scale parameter r is chosen to minimize Ak(rJk. k :W,) as a function

of r (see (!...t)). They give no conclusions as to the relative efficiency of the scaled and

unscaled versions of the method, but find that the modified methods offer some improvement

over Gauss-Newton, while exhibiting the same difficulties.

7. Sequential Quadratic Programming (SQP) Methods

Fraley [1987a] proposes algorithms that solve quadratic programming subproblems whose

formulation is based on convergence properties of sequential quadratic programming methods

for constrained optimization, and on geometric considerations in nonlinear least squares. The

motivation behind these methods is as follows. Recall that the Hessian matrix of the least-squares

objective can be separated into the sum of two components involving different types of derivative

information
'2 1IT/ ._jTj + B,

where

i=I1.

The corrected Gauss-Newton methods (Section 4) calculate a search direction that is separated

into two orthogonal components when 0 < grndr(J) < n, and can be viewed as SQP methods.

When gradr(.l) = rank(J) < n, the contributions of .IT.7 and of R (or of an approximation to

B) are essentially decoupled because the contribution of .ITj in the projected Hessian is zero. No

such separation is possible when rnnk(J) = n. In any case, gradc(J) < n may be selected based

on the progress of the minimization as well as the singular values of .1, so that partial separation of
.ITJ and B may occur between the extremes of Gauss-Newton (grndr(J) = rank(J)), and a full

Newton-type method (grade(J) = 0). The strategy of making a quasi-Newton approximation

to B which is then added to jTj in a full Newton-type method has not been successful outside

a neighborhood of the solution, unless it is combined with other techniques (see Section 5).

The approach taken in Fraley [1987a] is to use a quasi-Newton approximation to the full Hessian,

while separating out some of the contribution to the curvature due to .JTJ by including first-order

inform2tion about the residuals as constraints.

2.5
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A search direction is computed as the solution to a quadratic program (QP) of the form

min 9 T + P (7.1)

subject to

-bL <Ap + r < V

where

b' >0 and b ">0.

In SQP methods for constrained optimization, 11 approximates the Hessian of a Lagrangian

funtcion in order to take into account the curvature of the constraints that are active at the

solution (e. g., Powell [1983], Gill et al. [1985b, 1986b], Nocedal and Overton [1985], Stoer

[1985], and Gurwitz [1986]). For nonlinear least squares, it suffices for H to approximate the

Hessian matrix of I fTf even if some of the contraints in (7.1) are active at a solution z,

because g(z') = 0. These methods have the potential to converge faster than quasi-Newton

methods for unconstrained optimization, since only the projection of the Hessian in the null space

of the active QP constraint normals - rather than the full Hessian - need be positive definite

as a condition for superlinear convergence.

Two classes of suitable QP constraints for (7.1) are described: constraints on the directional
atives of individual residuals, and constraints based the QR factorization of J. A departure

m other algorithms is that information about the residuals, and interrelationships between

residuais, can be used to construct the subproblems (the algorithm of Davidon [1976] is an

exception - see Section 11). In the SQP algorithms, a set C of desirable constrai:.ts is chosen

first, which may be infeasible or may otherwise exclude all suitable search directions. For example,

such a set of consfaints is

V6 ,p =1 ... (7.2)

Any p satisfying VoTp = -+i is a descent direction for Oi if O' 96 0 and is otherwise orthogonal ,,
4..

to Voi. The unconstrained minimum Pq, of the QP objective in (7.1) is a descent direction

for the nonlinear least-squares objective provided It is positive definite. Therefore, as long as

p., is considered satisfactory, an acceptible search direction will eventually be obtained by either

removing some constraints from C, or else by perturbing the constraints in C so as to enlarge the

feasible region. Based on this reasoning. she proposes two different strategies (which could also

be combined)
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One strategy uses a QP to select a subset of constraints in C as the feasible region for (7.1).

Several quadratic programs may be solved within a single iteration in order to compute a search

direction, which is justified for two reasons. First, starting the solution process for a QP with

information about the solution of a related subproblem can often lead to significant savings in

QP iterations (see, e. g., Gill et al. [1985a]). Also, when the cost of a function evaluation is

much greater than the cost of a QP iteration, the effort involved in obtaining the search direction.

by solving more than one subproblem may be worthwhile if it results in a substantial reduction

in the number of outer iterations.

It is difficult to automate the selection of QP cfnstraints, and the evaluation of the current

QP solution as a candidate for the search direction. One strategy considers each of the constraints

in (7.?) separately in order of decreasing residual size, with the object of including as many of the

constraints as possible. A constraint is added to the current constraint set (initially empty) if the

corresponding QP computes an "acceptable" search direction p. In addition to the requirement

that gT < 0, Fraley uses a lower bound on the magnitude of p, and an upper bound on

I co.(g iJ)I, as the criteria for accepting f. Some other examples that use constraints based on

the QR factorization are very similar to corrected Gauss-Newton methods (Section 4).

In the second approach, constraints in C are modified in order to obtain a suitable feasible

region. This is accomplished by treating constraint bounds as variables in a QP. Using the

constraint set (7.2), Fraley shows how these SQP algorithms are related to Gauss-Newton and

Levenberg-Marquardt methods. The QP

inn bTb
b p

sub,ject to

-b < .Jp + f _< b (7.3)

b > 0,

computes the smallest possible perturbation that allows all of the (7.2) to intersect. In the solution

(I; f) to (7.3), the vector j is a Gauss-Newton search direction. When J is ill-conditioned, it is

possible that the constraints in (7.2) do intersect (b = 0), but that the intersection occurs at a

vector j that is very large in magnitude. For w > 0, the QP

rwin bTb + PT P
b;p

stibjiert to

-b < Jp + f <b (7.4)
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b > 0,

forces IIhJI to increase when IIII would otherwise be large. In the solution (b /3) to (7.4),

the vector / is a Levenberg-Marquardt search direction. In an SQP algorithm based on (7.3)

(respectively. (7.4)) there is the option of using P (P) as a search direction, or of using 1 (i) to

define bounds for a second QP of the form (7.1), from which the search direction is computed.

Fraley proposes a number of variations of these basic SQP algorithms and tests some of them

on a set of fourteen problems. She uses the BFGS method to approximate H in (7.1) just as

in unconstrained optimization, and observes that the approximation retains positive definiteness

throughout. She finds the SQP methods work well on some problems, and poorly on some others,

so that it is not possible to say anything conclusive about their performance relative to existing

methods.

8. Continuation Methods

Continuation methods have also been applied to nonlinear least-squares problems. These

methods solve a sequence of parameterized subproblems .

nain F(.-; 7j); i = 1, (8.1)

where

0 o< r, < .. . '..

and

arg min f(:;0) =o and arg rin li(z; 1) = z.

The idea is that methods that have fast local convergence, but may not be robust in a global

sense, can be applied to solve each subproblem in relatively few steps, because information from

the solution of previous subproblems may be used to predict a good starting value for the next

one.

DeVilliers and Glasser [1981] define

f(7; T) - 21f(7)II1 + 2(T - 1)Iif(ao)IIg (8.2)

where k is a positive integer, with a fixed spacing between the parameters ri in (8.l). They

test two different continuation methods, one that uses Newton's method (with linesearch) to

solve the intermediate problems, and one that uses a Gauss-Newton method (with linesearch).

An unspecified "device" is included in the implementation of both minimization techniques to

ensure a decrease in the objective at every iteration. The continuation methods are compared with
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results obtained by applying both minimization algorithms to the original problem. Intermediate

subproblems are not solved exactly the criterion

where r, = 10-2 if i < i..,, and 1 0 - 6. is used to detemine convergence of a subproblem.

Numerical experiments are carried out on three different test problems, with multiple starting

values, most of which are points of failure for both Newton's method and Gauss-Newton. They

conclude that, although the continuation method is less efficient than the underlying method

when both are successful, it will converge on many problems for which the underlying method

fails when used alone. However, the results they present are for different values of the step

size, and the exponent k, and no mechanism is given for the automatic choice of either of the

parameters. DeVilliers and Glasser point out that their methods may require modification if

the optimization method that is used to solve the subproblems encounters difficulties, or if the

continuation path is not well-behaved. Fraley [1987a, 1988] observes that the first two test

problems of DeVilliers and Glasser are very sensitive to the choice of the maximum step bound,

or the initial trust-region size for most methods and that the methods can be quite efficient

provided an appropriate non-default choice is made for these parameters.

Saline 119871 incorporates a trust-region strategy into a continuation method by defining

T~(_ 1)-i~(kI.-( )Ilf(To)II2+ ~ - 1!D -zo)11) (9.3)
' 2 2

and then applying Gauss-Newton to this function for the inner iterations. Instead of allowing

the continuation parameter r to range from 0 to 1, he advocates stopping when it becomes

inefficient to solve the subproblems, and then restarting the method after replacing Zo by the

new iterate. He points out that his approach is especially suitable for large-residual problems,

because it transforms the original problem into a sequence of subproblems with small residuals

The idea is to attempt to determine when the neglected terms become significant, and then pose

a new subproblem. An initial value, rl, of the continuation parameter must be supplied by the

user in order to start the method. Should any step fail to obtain a decrease in either the nonlinear

least-squares objective or its gradient, -1 is decreased, and the calculation is repeated without

changing -0. Theorems on descent conditions and convergence are presented. Salane argues

that his continuation method allows direct selection of the Levenberg-Marquardt parameter A

in (8.3), because A may be chosen so that the term A(I - rD DTD behaves somewhat like the

second-order terms that have been neglected in the Hessian of 41(a; T). However, no mechanism

is suggested for automatic choice of .\, and A = IIf(Xo)112 is used in the tests.
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Salane gives test results for a version of his algorithm on a set of nine problems (all of which

are included in our set). A comparison is made to results obtained from MINPACK, and also to

the results reported by DeVilliers and Glasser [1981] for two of the test problems. He concludes

that the performance of the method compares favorably with that of MINPACK, and is superior

to the DeVilliers and Glasser continuation method on the relevant problems. The matrix D in

(8.3) is taken to be the identity matrix throughout the tests, and for one test problem a type of

variable scaling is used. No information is given concerning scaling for the MINPACK tests. The

results that ate presented correspond to several different values of r1 , although the criterion used

in choosing this value is not given. Test results in which the value of r1 is varied are included for

three of the problems for the purpose of showing that performance is sensitive to the specification

of the continuation parameter.

9. Modifications of Unconstrained Optimization Methods

Besides Gauss-Newton methods, several straightforward modifications of unconstrained op-

timization methods are possible for nonlinear least squares. In quasi-Newton methods, joj 0 can

be used as the initial approximation to the Hessian matrix. Ramsin and Wedin [1977] report

favorable results with this technique. We note that a perturbed matrix jT jo can be used as the

initial approximate Hessian, where Jo is a modified Cholesky factor of JoTJ'o (Gifl and Murray

(1974]) , in order to maintain positive definiteness when Jo is ill-conditioned.

Wedin [1974] (see also Ramsin and Wedin [1977]) suggests a modification of Newton's

method in which the search direction is defined by I
,n

(T + Z: 2 )p (9.1)

where 1i is the ith component of the projection I of f onto 1I(J). This iteration approaches

Newton's method in the limit, since f(2-) = 1(z), and is parameter-independent, in the sense 1

that minimization oi f as a function of 7 is equivalent to minimization of f as a function of a new

variable - provided the mapping that defines a as a function of z has a nonsingular Jacobian.

An obvious difficulty is that f, and hence (9.), is not well-defined when J is ill-conditioned.

Recall that in quasi-Newton methods for unconstrained optimization, the approximate Hesian I L

matrix is required to satisfy the condition

Il$k Y lf, (9.2)

where

e -k+l - Jk and Yk =9k+1 - 9k
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(e g. Dennis and Mori [1977]). AI-Baali and Fletcher [1985] suggest the use of .k defined by

(5.12) rather than yk = ,k4l-9k in the quasi-Newton condition (9.2). They report improvements

with the iFGc, and DFP formulas when this substitution is made- However, they remark that

the condition .T. k > 0 for hereditary positive definiteness of the updates is not guaranteed by the

linesearch requirements, and they replace 9T " in the update formulas by max {9 sk,0.0 1 [ T}

as a safeguard. They do not consider this a major drawback, because pTS' > 0.01"1S almost

always occurred in their examples. A somewhat different safeguard is used in a later related

paper [see Fletcher and Xu (1986), p. 26) discussed below.

AI-Baali and Fletcher (1985] also develop several hybrid linesearch methods in which the

modeis are assessed in terms of the function Ak defined by (5.13), an approximate measure of

the error in the inverse Hessian. In one class of methods, the modified BFGS update described

in the preceding paragraph is applied to a matrix of the form

Ilk+, (1 Ok)Hk +kkk+ 1
1

4 ,t

where rk minimizes Ak k~( .+V.k+1;), and Ok is chosen to minimize Ak( hk+i;Pk), in order

to obtain the new approximate Hessian. In their implementation, in which Ok is restricted to be

either 0 or 1, they find that the method has difficulties on singular problems, and that the scaling

of the search direction often does not allow n = I as a trial step in the linesearch. They refer to

AI-Baali [1984] for more details of the tests.

Another class of hybrid methods defined by AI-Baali and Fletcher compares the value

AQ, Ak ( Ilk; 90k

for the cL;rent quasi-Newton approximation Ark with

for the Gauss-Newton approximation. The basic algorithm can be summarized as follows

if AQN < A.S then se tre modifred BFGS search direction (
(9.3)

else uqe the Gauss-Newton search direction

They test several versions of this method that differ in the action taken whenever a switch from
Gauss-Newton to quasi-Newton takes place. In one, Hk+i is reset to Jk"1' k+, while in another

Hk+I is reset to the result of applying the modified BFGS update to IT'+lk+, (conjugate-
gradient acceleration). They observe little difference in performance between these two alterna-

tives, and find them to be the best of the many methods for nonlinear least squares treated in

their study. A version of the first strategy that substitutes the quantity in, Ak(r IT 1.7k+l n



for .1 in the comparison with -1. is also tried, but it is found to have some difficult;es

on a problem for which the Jacobian is singular at the solution. A final variant maintains the

quasi-Newton update throughout, and never resets the approximate Hessian. They find that this

method is not as efficient as the others on some types of large-residual problem.

Fletcher and Xu [1986] give an example in which the hybrid method (9.3) has a linear rate

of convergence when the BFGS method would converge superlinearly. The difficulty is that the

comparison between AQ. and A,,; may fail to distinguish between zero-residual problems and

those with nonzero residuals. They propose two new hybrid algorithms and show them to be

superlinearly convergent. The first algorithm computes the modified BFGS search direction if

IIf(:U)O-2 - If(k+1)112 < , (9.4)

11(z)112

for some fixed 01 E (0, 1), and a Gauss-Newton step otherwise. The method is motivated by the

following relationship

INf(Z )fl 2 - flf(-Tk 4 l)) 12 0 O, if ljf(7")I12 # 0;
li0 If(2k)2 " 1 f l1f(r )112 = 0.

The second algorithm computes a modified BFGS step if

Ilf(2.k) - f(k+1)112 < 0 and Ak k(J +1 J+;Pk) ~ ~ (.5

IIf(Tk)112  9k(JT Jk; )

where both ei and - are fixed parameters in (0, 1), and a Gauss-Newton step otherwise. The

additional condition for choosing the BFGS search direction is derived from another asymptotic

relationship

Ak ~('k+l Jk+l; Vk) -f0, if If)I 2 =0;

k,(,"~ k) 1, if I 9f( )1#0.
Numerical results are given for set of fifty-six test problems, a few with multiple starting values.

They conclude that the new methods offer some overall improvement over those based on (9.3),

but that there is no reason to prefer the more complicated test (9.5) over (9.4).

10. Special Linesearches

Lindstr~m and Wedin [1984] and AI-Baali and Fletcher [1986] propose specialized linesearch

methods for nonlinear least-squares problems in which each residual is interpolated by a quadratic

function, in contrast to the strategy of interpolating to the sum of squares used in conventional

linesearches for unconstrained minimization. As a result a quartic polynomial, rather than a

simpler cubic or quadratic. is minimized at each iteration of the linesearch.
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Lindstr6m and Wedin substitute their linesearch, which uses only function values, for the,

quadratic interpolation and cubic interpolation routines in the NAG Library (1980 version) non-

linear least-squares algorithm B04GBF (see Sections 4 and 5). and compare the performance with

the NAG linesearch routines on a set of eighteen test problems. They find that no linesearch

algorithm is superior over all, but that their algorithm makes a better initial prediction to the

steplength that minimizes the sum of squares along the search direction. In a second set of tests

that includes multiple starting values for many of the test problems, they add a modified version

of their linesearch algorithm that reverts to a simple backtracking strategy if an acceptable de-

creast in the sum of squares is not obtained after two function evaluations. They observe that

their modified method requires fewer function evaluations than either of the NAG linesearch rou-

tines, and that the total for their original method falls between cubic interpolation and quadratic

interpolation to the sum of squares. They note occasional inefficiencies in their methods due to

extrapolation, but comment that such effects are more pronounced for quadratic interpolation of

the sum of squares.

AI-Baali and Fletcher [1986] test similar linesearch methods that use gradients on a set of

fifty-five test problems with a number of nonlinear least-squares algorithms described in AI-Baali
[1984] (see also AI-Baali and Fletcher [1985]). They conclude that considerable overall savings

can be made by interpolating to each of the residuals rather to than the sum of squares. They

also obtain favorable results for two different schemes designed to save Jacobian evaluations in

the new linesearch.

11. Methods for Special Problem Classes
It-

Algorithms have also been formulated to treat some special cases of the nonlinear least-

squares problem. For example, there is a vast literature concerning methods specific to nonlinear

equations that we shall make no attempt to survey here.

In some nonlinear least-squares problems, the vector " can be separated into two sets of

variables, say

where it is relatively easy to minimize the sum of squares as a function of y alone. A fairly

common situation of this type is one in which y/ is the set of variables that occur linearly in all

of the residuals, so that

is a linear least-squares problem. For example, exponential fitting problems (see Varah [19851)

fall into this category. Methods that deal with separable nonlinear least-squares problems were

33



introduced by Golub and Pereyra [1973]. Ruhe and Wedin [1980] survey these methods and

give some extensions. They describe three basic algorithms, all of which use Gauss-Newton to

minimize the sum of squares as a function of y. The methods differ in the definition of the

quadratic model function for minimization with respect to z. The Jacobian and Hessian of the

nonlinear least-squares objective can be partitioned as follows:

J=(J, J)

so that

and

VGf:. G G
= (j~j 2 + B2 2 ) - (JrJ + B )T(J J, + B yv)-(JYJp + B=).

The approximate Hessians that are considered for the minimization as a function of z are

jT + B+

-G,( . )  , (11.1)

S ( ) jT,(11.2)

and

JTJ. (11.3)

Algorithms based on (11.1) and (11.2) are shown to converge at a faster rate than the conven-

tional Gauss-Newton method, while the asymptotic convergence rate for (11.3) may be much
slower. On the other hand, of the three quadratic models, it is least expensive to compute so-

lutions with the approximate Hessian (11.3), and most expensive to comute them from (11.1).

Use of (11.2) costs about the same as a conventional Gauss-Newton method. Tests on four

sample problems are given to illustrate rates of convergence.

Davidon (1976] introduces a quasi-Newton method for problems in which (i) rn >>, (aw)

location of the minimum is not very sensitive to weighting of the residuals, and (iii) rapid

approach to a minimumn is more important than convergence to it. A new estimate of the

minimum is computed after each individual residual and its gradient are evaluated, rather than

after evaluating the entire block of m residuals. Davidon gives an analogy to time-dependent
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measurements of experimental data, in which quantities calculated from the measurements are

updated each time a new observation is made. Starting from an initial quadratic approximation %

qo(X) = P2(0)Tf(Zo) + (, - ?o)THo01- To),

with 110 positive-definite, the algorithm that determines the next iterate is equivalent to mini-

mizing a quadratic function of the form

qk4+(y) = [.O(. ) + (, - Xk )T70,2k()] 2 + Akqk(z),

where A is in (0, l]. It is suggested that the choice of {Ak should be problem-dependent, and

some alternatives are proposed. Davidon tests the method on a set of four problems in which he

varies the size of the problem, the initial estimate of the solution, and the sequence {Ak}. He

observes that the method tends to oscillate about a minimum rather than converging to it, but

that it often reduces the sum of squares more rapidly than other methods.

Further computational experiments with Davidon's method are reported in Cornwell, Koc-

man, and Prosser [1980]. On a set of fifteen zero-residual problems, they test the method with

various fixed values of )k. They obtain overflow in most cases for small values, but otherwise find

that the efficiency of the method decreases as \k is increased. In one case, the method cycled

through a sequence of points that was not near-optimal. On the basis of these observations,

they implement a new version that attempts to use a fixed, relatively small value of Ak, restart-

ing from the initial vector with a larger value if it is determined that overflow would otherwise

occur. They find that this modified implementation of Davidon's method is competitive with

the computer program LMCHOL from Argonne National Laboratory based on Fletcher's [1971]

Levenberg-Marquardt algorithm (which has since been superseded by the MINPACJ routine

LMDER [Mori, Garbow, and Hillstrom (1980)]).
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